Hypoxia-Induced Modulation of OCT-4, SOX-2, NANOG, and KLF-4 Expression in Mesenchymal Stem Cells

  • Risky Chandra Satria Irawan Student of Biomedical Sciences Doctoral Program, Faculty of Medicine, Sultan Agung Islamic University (UNISSULA), Semarang, 50112, Indonesia
  • Nurul Hidayah Lecturer, Biotechnology Undergraduate Program, Institut Karya Mulia Bangsa (IKMB), Semarang, Indonesia
  • Bhirau Wilaksono Lecturer, Faculty of Medicine, Universitas Negeri Makassar (UNM), Parepare, 91121, Indonesia
Keywords: Mesenchymal stem cells, hypoxia, stemness, regenerative medicine

Abstract

Background: Mesenchymal stem cells (MSCs) possess remarkable regenerative and immunomodulatory capabilities, largely attributed to their intrinsic stemness properties regulated by transcription factors such as OCT-4, SOX-2, NANOG, and KLF-4. However, in vitro culture under normoxia often leads to stemness decline. Hypoxic preconditioning has been proposed to preserve stemness, though the optimal duration of exposure remains unclear. This study aimed to evaluate the time-dependent effects of hypoxia on the expression of core stemness-related transcription factors in human umbilical cord Wharton’s jelly-derived MSCs. Methods: MSCs (passage 5) obtained from the Stem Cell and Cancer Research (SCCR) Laboratory were cultured under hypoxia (5% O₂) for 0, 4, 6, 10, 12, and 24 hours. Gene expression of OCT-4, SOX-2, NANOG, and KLF-4 was quantified by qRT-PCR using GAPDH as a reference. Morphological changes were observed via phase-contrast microscopy. Statistical analysis was performed using one-way ANOVA with Tukey’s post hoc test. Results: Hypoxic exposure induced a significant, time-dependent upregulation of OCT-4, SOX-2, and NANOG, with peak expression at 12 hours (approximately 13-, 7-, and 5-fold increases, respectively; p < 0.05). KLF-4 expression showed a modest elevation but was not statistically significant. Prolonged hypoxia (24 hours) resulted in a marked decline in all gene expressions toward baseline levels, accompanied by cell rounding and detachment. These findings indicate that short-term hypoxia enhances MSC stemness, while extended exposure triggers stress-related responses. Conclusion: Controlled short-term hypoxia (approximately 12 hours at 5% O₂) optimally enhances MSC stemness gene expression without compromising morphology or viability. This duration represents an effective preconditioning window for maintaining MSC multipotency and may improve the consistency and therapeutic efficacy of MSC-based applications.

References

1. Antebi B, Rodriguez LA II, Walker KP III, Asher AM, Kamucheka RM, Alvarado L, Mohammadipoor A, Cancio LC. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther. 2018 Oct 11;9:265. https://doi.org/10.1186/s13287-018-1007-x
2. Ejtehadifar M, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Dehdilani N, Abbasi P, Molaeipour Z, Saleh M. The effect of hypoxia on mesenchymal stem cell biology. Adv Pharm Bull. 2015 Jun;5(2):141–149. https://doi.org/10.15171/apb.2015.021
3. Ahmed NM, Murakami M, Kaneko S, et al. The effects of hypoxia on the stemness properties of human dental pulp stem cells (DPSCs). Sci Rep. 2016;6:35476. https://doi.org/10.1038/srep35476
4. Yustianingsih V, Sumarawati T, Putra A. Hypoxia enhances self-renewal properties and markers of mesenchymal stem cells. Univ Med. 2019;38(3):164–171. doi:10.18051/UnivMed.2019.v38.164-171
5. Ma M. Role of hypoxia in mesenchymal stem cells from dental pulp: influence, mechanism and application. Cell Biochem Biophys. 2024;82:535–547. https://doi.org/10.1007/s12013-024-01274-0
6. Alwohoush E, Ismail MA, Al-Kurdi B, Barham R, Al Hadidi S, Awidi A, Ababneh NA. Effect of hypoxia on proliferation and differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Heliyon. 2024 Oct 15;10(19):e38857. doi:10.1016/j.heliyon.2024.e38857
7. Huang Q, Zhuo Y, Duan Z, Long Y, Wang J, Zhang Z, et al. Long-term hypoxic atmosphere enhances the stemness, immunoregulatory functions, and therapeutic application of human umbilical cord mesenchymal stem cells. Bone Joint Res. 2024 Dec 12;13(12):764–778. https://doi.org/10.1302/2046-3758.1312.BJR-2024-0136.R2
8. Silvestro S, Diomede F, Chiricosta L, Zingale VD, Marconi GD, Pizzicannella J, Valeri A, Avanzini MA, Calcaterra V, Pelizzo G, Mazzon E. The role of hypoxia in improving the therapeutic potential of mesenchymal stromal cells: a comparative study from healthy lung and congenital pulmonary airway malformations in infants. Front Bioeng Biotechnol. 2022;10:868486. doi:10.3389/fbioe.2022.868486
9. Shamsasenjan K, Ejtehadifar M, Movassagh Pour A, Akbarzadehlaleh P. The effect of hypoxia on mesenchymal stem cell biology. Adv Pharm Bull. 2015 Jun;5(2):141–149. doi:10.15171/apb.2015.021
10. Ding H, Chen S, Yin J, Xie X, Zhu Z, Gao Y, Zhang C. Continuous hypoxia regulates the osteogenic potential of mesenchymal stem cells in a time-dependent manner. Mol Med Rep. 2014;10(4):2184–2190. doi:10.3892/mmr.2014.2451
11. Zhi X, Xiong J, Wang M, Zhang H, Huang G, Zhao J, Zi X, Hu YP. Physiological hypoxia enhances stemness preservation, proliferation, and bidifferentiation of induced hepatic stem cells. Stem Cells Int. 2018;2018:7618704. doi:10.1155/2018/7618704
12. Burzi IS, Parchi PD, Barachini S, Pardini E, Sardo Infirri G, Montali M, Petrini I. Hypoxia promotes the stemness of mesangiogenic progenitor cells and prevents osteogenic but not angiogenic differentiation. Stem Cell Rev Rep. 2024;20:1830–1842. doi:10.1007/s12015-024-10749-9
13. Kim Y, Jin HJ, Heo J, Ju H, Lee HY, Kim S, et al. Small hypoxia-primed mesenchymal stem cells attenuate graft-versus-host disease. Leukemia. 2018;32:2672–2684. doi:10.1038/s41375-018-0114-5
14. Bahir B, Choudhery MS, Hussain I. Hypoxic preconditioning as a strategy to maintain the regenerative potential of mesenchymal stem cells. In: Regenerative Medicine. London: IntechOpen; 2020 Jul 17. doi:10.5772/intechopen.93217
15. Di Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, et al. Insight into hypoxia stemness control. Cells. 2021;10(8):2161. doi:10.3390/cells10082161
16. Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, Hung SC. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood. 2011;117(2):459–469. doi:10.1182/blood-2010-05-287508
17. Li G, Kitada M, Dezawa M. Hypoxia boosts pluripotent-like Muse cell ratio in mesenchymal stromal cells and upregulates the pluripotency gene expression. Sci Rep. 2025;15:31183. doi:10.1038/s41598-025-31183-0
18. Tomecka E, Lech W, Zychowicz M, Sarnowska A, Murzyn M, Oldak T, et al. Assessment of the neuroprotective and stemness properties of human Wharton’s jelly-derived mesenchymal stem cells under variable (5% vs. 21%) aerobic conditions. Cells. 2021;10(4):717. doi:10.3390/cells10040717
19. Shimasaki M, Ichiseki T, Ueda S, Hirata H, Kawahara N, Ueda Y. Mesenchymal stem cells preconditioned with hypoxia and dexamethasone promote osteoblast differentiation under stress conditions. Int J Med Sci. 2024;21(8):1511–1517. doi:10.7150/ijms.91222
20. Ohori-Morita Y, Ashry A, Niibe K, Egusa H. Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids. Stem Cells Transl Med. 2025;14:szae093. doi:10.1093/stcltm/szae093
21. Mendiratta M, Mendiratta M, Malhotra L, Rai S, Sarangathem V, Dahiya P, et al. Hypoxia-mediated molecular interactions of tissue-specific mesenchymal stem cells drive metabolic reprogramming and immunomodulation in acute graft-versus-host disease. bioRxiv. 2025 Jan 6. doi:10.1101/2025.01.06.630457
22. Ye Y, Zhao X, Xu Y, Yu J. Hypoxia-inducible non-coding RNAs in mesenchymal stem cell fate and regeneration. Front Dent Med. 2021;2:799716. doi:10.3389/fdmed.2021.799716
23. He X, An W, Liu J. Effects of hypoxia on stemness, survival and angiogenic capacity of muscle-derived stem/progenitor cells. Biochem Cell Mol Biol. 2021;3(4):855–868. doi:10.1080/26895293.2021.1977725
24. Wan Kamarul Zaman WS, Wong CW, Yong K, Choi JR, Mat Adenan NA, Omar SZ, Wan Abas WAB, Pingguan-Murphy B. The effects of hypoxia and serum-free conditions on the stemness properties of human adipose-derived stem cells. Cytotechnology. 2016;68(5):1859–1872. doi:10.1007/s10616-015-9939-9
25. Otero-Albiol D, Carnero A. Cellular senescence or stemness: hypoxia flips the coin. J Exp Clin Cancer Res. 2021;40:243. doi:10.1186/s13046-021-02021-3
Published
2025-10-11
How to Cite
Irawan, R. C. S., Hidayah, N., & Wilaksono, B. (2025). Hypoxia-Induced Modulation of OCT-4, SOX-2, NANOG, and KLF-4 Expression in Mesenchymal Stem Cells. International Journal of Cell and Biomedical Science, 3(9), 282-289. https://doi.org/10.59278/cbs.v3i9.62
Section
Articles

Most read articles by the same author(s)