Harnessing the Innate Effector: A Narrative Review of Advancing Strategies in CAR Engineering, Metabolic Reprogramming, and TME Resistance of Natural Killer Cells for Cancer Immunotherapy

  • Rita Agustina Student of Biomedical Sciences Doctoral Program, Faculty of Medicine, Sultan Agung Islamic University (UNISSULA), Semarang, 50112, Indonesia
  • Endah Agustina Lestari Research and Development, Stem Cell and Cancer Research (SCCR) Laboratory, Semarang, 50223, Indonesia
  • Husni Ahmad Sidiq Student of Biomedical Science Undergraduate Program, Institut Karya Mulia Bangsa (IKMB), Semarang, 50223, Indonesia
  • M. Ariq Nazar Lecturer, Biomedical Science Undergraduate Program, Institut Karya Mulia Bangsa (IKMB), Semarang, 50223, Indonesia
Keywords: Natural Killer (NK), Cancer treatment, Chimeric Antigen Receptors (CARs)

Abstract

Natural Killer (NK) cell-based immunotherapy is rapidly emerging as a promising modality for cancer treatment. As pivotal players in the innate immune system, cells independently recognize and eliminate malignant cells without prior sensitization, offering distinct advantages over other cell-based therapies. This review highlights the current landscapes of NK cell adoptive therapy, from fundamental biology to cutting-edge clinical applications. It highlights how advancing NK cell sources, including peripheral blood, umbilical cord blood, established cell lines, and the increasingly significant induced pluripotent stem cells (iPSCs), are driving wider, more standardized therapeutic use. The multifaceted strategies employed to enhance NK cell efficacy are being explored, including advanced expansion protocols and sophisticated genetic engineering techniques such as the introduction of Chimeric Antigen Receptors (CARs) and modifications to bolster antibody-dependent cellular cytotoxicity. Additionally, it also addresses the significant hurdles that remain, primarily the immunosuppressive tumor microenvironment (TME), and discusses innovative strategies being developed to overcome these challenges. By synthesizing preclinical data and results from the latest clinical trials, this review highlights the remarkable progress and bright future of NK cell therapy as a safer, effective, and more accessible cornerstone of cancer treatment.

References

Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther.Springer Nature. 2024;9(1). doi:10.1038/s41392-024-01809-0

Xue D, Lu S, Zhang H, et al. Induced pluripotent stem cell-derived engineered T cells, natural killer cells, macrophages, and dendritic cells in immunotherapy. Trends Biotechnol.Elsevier Ltd. 2023;41(7):907-922. doi:10.1016/j.tibtech.2023.02.003

Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat Rev Clin Oncol.Nature Publishing Group. 2018;15(1):47-62. doi:10.1038/nrclinonc.2017.148

Page A, Chuvin N, Valladeau-Guilemond J, Depil S. Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol.Springer Nature. 2024;21(4):315-331. doi:10.1038/s41423-024-01145-x

Dogra P, Rancan C, Ma W, et al. Tissue Determinants of Human NK Cell Development, Function, and Residence. Cell. 2020;180(4):749-763.e13. doi:10.1016/j.cell.2020.01.022

Fang F, Xie S, Chen M, et al. Advances in NK cell production. Cell Mol Immunol.Springer Nature. 2022;19(4):460-481. doi:10.1038/s41423-021-00808-3

Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress- inducible MICA. Science (1979). 1999;285(5428):727-729. doi:10.1126/science.285.5428.727

Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity.Cell Press. 2017;47(5):820-833. doi:10.1016/j.immuni.2017.10.008

Jacobs R, Hintzen G, Kemper A, et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol. 2001;31(10):3121-3126. doi:10.1002/1521-4141(2001010)31:10<3121::AID-IMMU3121>3.0.CO;2-4

Prager I, Liesche C, Van Ooijen H, et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. Journal of Experimental Medicine. 2019;216(9):2113-2127. doi:10.1084/jem.20181454

Romee R, Foley B, Lenvik T, et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood. 2013;121(18):3599-3608. doi:10.1182/blood-2012-04

Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov.Nature Research. 2020;19(3):185-199. doi:10.1038/s41573-019-0051-2

Deng Y, Wu C, Na J, et al. Prospects and limitations of NK cell adoptive therapy in clinical applications. Cancer and Metastasis Reviews.Springer. 2025;44(3). doi:10.1007/s10555-025-10273-3

Perera Molligoda Arachchige AS. Human NK cells: From development to effector functions. Innate Immun.SAGE Publications Ltd. 2021;27(3):212-229. doi:10.1177/17534259211001512

Sun JC, Lanier LL. NK cell development, homeostasis and function: Parallels with CD8 + T cells. Nat Rev Immunol. 2011;11(10):645-657. doi:10.1038/nri3044

Kotylo PK, Baenzinger JC, Yoder MC, Engle WA, Bolinger CD. Rapid Analysis of Lymphocyte Subsets in Cord Blood. http://ajcp.oxfordjournals.org/

Domogala A, Alejandro Madrigal J, Saudemont A. Cryopreservation has no effect on function of natural killer cells differentiated in vitro from umbilical cord blood CD34+ cells. Cytotherapy. 2016;18(6):754-759. doi:10.1016/j.jcyt.2016.02.008

Klingemann H. Challenges of cancer therapy with natural killer cells. Cytotherapy.Elsevier Inc. 2015;17(3):245-249. doi:10.1016/j.jcyt.2014.09.007

Romee R, Foley B, Lenvik T, et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood. 2013;121(18):3599-3608. doi:10.1182/blood-2012-04

Arai S, Meagher R, Swearingen M, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: A phase I trial. Cytotherapy. 2008;10(6):625-632. doi:10.1080/14653240802301872

Klingemann H. The NK-92 cell line—30 years later: its impact on natural killer cell research and treatment of cancer. Cytotherapy.Elsevier B.V. 2023;25(5):451-457. doi:10.1016/j.jcyt.2022.12.003

Ding M, Lu Y, Lei QK, Zheng YW. Advantages and challenges of ex vivo generation and expansion of human hematopoietic stem cells from pluripotent stem cells. Exp Hematol.Elsevier Inc. 2025;145. doi:10.1016/j.exphem.2025.104752

Crow D. Could iPSCs Enable “Off-the-Shelf” Cell Therapy? Cell.Cell Press. 2019;177(7):1667-1669. doi:10.1016/j.cell.2019.05.043

Santo JP Di, Lim AI, Yssel H. “ILC-Poiesis”: Generating Tissue ILCs from Naïve Precursors. Vol 8.; 2017. www.impactjournals.com/oncotarget/

Cichocki F, Bjordahl R, Gaidarova S, et al. IPSC-Derived NK Cells Maintain High Cytotoxicity and Enhance in Vivo Tumor Control in Concert with T Cells and Anti-PD-1 Therapy. Vol 12.; 2020. http://stm.sciencemag.org/

Fang F, Xie S, Chen M, et al. Advances in NK cell production. Cell Mol Immunol.Springer Nature. 2022;19(4):460-481. doi:10.1038/s41423-021-00808-3

Page A, Chuvin N, Valladeau-Guilemond J, Depil S. Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol.Springer Nature. 2024;21(4):315-331. doi:10.1038/s41423-024-01145-x

Zhang J, Jia Z, Pan H, et al. From induced pluripotent stem cell (iPSC) to universal immune cells: literature review of advances in a new generation of tumor therapies. Transl Cancer Res.AME Publishing Company. 2025;14(4):2495-2507. doi:10.21037/tcr-24-1087

Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell. 2018;23(2):181-192.e5. doi:10.1016/j.stem.2018.06.002

Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. New England Journal of Medicine. 2020;382(6):545-553. doi:10.1056/nejmoa1910607

Dickinson M, Hamad N, Bryant C, et al. S261 FIRST IN HUMAN DATA OF NKX019, AN ALLOGENEIC CAR NK FOR THE TREATMENT OF RELAPSED/REFRACTORY (R/R) B-CELL MALIGNANCIES Topic: Gene Therapy and Cellular Immunotherapy-Clinical.; 2023. https://journals.lww.com/hemasphere/pages/default.aspx.

Sauter CS, Borthakur G, Mountjoy L, et al. A Phase 1 Study of NKX101, a Chimeric Antigen Receptor Natural Killer (CAR-NK) Cell Therapy, with Fludarabine and Cytarabine in Patients with Acute Myeloid Leukemia. Blood. 2023;142(Supplement 1):2097-2097. doi:10.1182/blood-2023-173582

Zhu H, Blum RH, Bjordahl R, et al. Pluripotent Stem Cell-Derived NK Cells with High-Affinity Noncleavable CD16a Mediate Improved Antitumor Activity.; 2020. http://ashpublications.org/blood/article-pdf/135/6/399/1633322/bloodbld2019000621.pdf

Jing Y, Ni Z, Wu J, et al. Identification of an ADAM17 cleavage region in human CD16 (FcγRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS One. 2015;10(3). doi:10.1371/journal.pone.0121788

Berrien-Elliott MM, Jacobs MT, Fehniger TA. Allogeneic Natural Killer Cell Therapy. http://ashpublications.org/blood/article-pdf/141/8/856/2082642/blood_bld-2022-016200-c-main.pdf

Cooley S, He F, Bachanova V, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019;3(13):1970-1980. doi:10.1182/bloodadvances.2018028332

Zhu H, Blum RH, Bernareggi D, et al. Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes In Vivo Persistence and Enhances Anti-tumor Activity. Cell Stem Cell. 2020;27(2):224-237.e6. doi:10.1016/j.stem.2020.05.008

Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol.Elsevier Ltd. 2022;43(10):833-847. doi:10.1016/j.it.2022.08.004

Kremer V, Ligtenberg M, Zendehdel R, et al. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J Immunother Cancer. 2017;5(1). doi:10.1186/s40425-017-0275-9

Yang Y, Gordon N, Kleinerman ES, Huang G. Promoting NK cell trafficking to improve therapeutic effect of NK cell therapy on osteosarcoma. J Immunother Cancer. 2015;3(Suppl 2):P24. doi:10.1186/2051-1426-3-s2-p24

Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018;10(459). doi:10.1126/scitranslmed.aat7807

Viel S, Marçais A, Guimaraes FSF, et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal. 2016;9(415). doi:10.1126/scisignal.aad1884

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science (1979). 2009;324(5930):1029-1033. doi:10.1126/science.1160809

Briukhovetska D, Suarez-Gosalvez J, Voigt C, et al. T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis. Immunity. 2023;56(1):143-161.e11. doi:10.1016/j.immuni.2022.12.010

Lopes JE, Fisher JL, Flick HL, et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J Immunother Cancer. 2020;8(1):e000673. doi:10.1136/jitc-2020-000673

Lin M, Luo H, Liang S, et al. Pembrolizumab plus allogeneic NK cells in advanced non–small cell lung cancer patients. Journal of Clinical Investigation. 2020;130(5):2560-2569. doi:10.1172/JCI132712

Vallera DA, Felices M, McElmurry R, et al. IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clinical Cancer Research. 2016;22(14):3440-3450. doi:10.1158/1078-0432.CCR-15-2710

Nieto Y, Banerjee PP, Kaur I, et al. Innate Cell Engager AFM13 Combined with Preactivated and Expanded Cord Blood-Derived NK Cells for Patients with Double Refractory CD30+ Lymphoma. Blood. 2022;140(Supplement 1):415-416. doi:10.1182/blood-2022-156125

Published
2025-10-13
How to Cite
Agustina, R., Lestari, E. A., Sidiq, H. A., & Nazar, M. A. (2025). Harnessing the Innate Effector: A Narrative Review of Advancing Strategies in CAR Engineering, Metabolic Reprogramming, and TME Resistance of Natural Killer Cells for Cancer Immunotherapy. International Journal of Cell and Biomedical Science, 4(11), 349-358. https://doi.org/10.59278/cbs.v4i11.70
Section
Review Articles

Most read articles by the same author(s)